On an iteration method for eigenvalue problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 376173
(http://iopscience.iop.org/0305-4470/37/23/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:16

Please note that terms and conditions apply.

On an iteration method for eigenvalue problems

Francisco M Fernández
INIFTA (Conicet, UNLP), Diag. 113 y 64, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina
E-mail: fernande@quimica.unlp.edu.ar and framfer@isis.unlp.edu.ar

Received 10 December 2003
Published 25 May 2004
Online at stacks.iop.org/JPhysA/37/6173
DOI: 10.1088/0305-4470/37/23/014

Abstract

We discuss a recently proposed asymptotic iteration method for eigenvalue problems. We analyse its rate of convergence, the use of adjustable parameters to improve it and the relationship with an alternative method based on the same ideas.

PACS number: 03.65.Ge

1. Introduction

In a recent paper Ciftci et al [1] developed an interesting asymptotic iteration method (AIM) for eigenvalue problems. They showed that the AIM yielded the correct answer for exactly solvable models and gave reasonably approximate results for some nontrivial one-dimensional problems such as anharmonic oscillators and singular potentials. Unfortunately, the authors did not show the rate of convergence of their calculations and simply mentioned the number of iterations necessary to obtain their results. Also, they did not compare the performance of the AIM with other existing methods.

The purpose of this paper is to fill that gap and to investigate the AIM somewhat further. First, we derive some of the AIM equations in a different way, second, we review one of the exactly solvable models considered by Ciftci et al [1], third, we carry out calculations of order considerably greater than those of Ciftci et al [1] in order to test the rate of convergence of the method numerically, fourth, we explore the use of adjustable parameters to improve the rate of convergence, fifth, we compare the AIM with a closely related method, and, finally, we try to draw some conclusions about the performance of the AIM.

2. The asymptotic iteration method

Ciftci et al [1] proposed the AIM to solve second-order differential equations of the form

$$
\begin{equation*}
y^{\prime \prime}(x)=\lambda_{0}(x) y^{\prime}(x)+s_{0}(x) y(x) \tag{1}
\end{equation*}
$$

They found that the general solution to this equation is
$y(x)=\exp \left[-\int^{x} \alpha\left(x^{\prime}\right) \mathrm{d} x^{\prime}\right]\left\{C_{2}+C_{1} \int^{x} \exp \left[\int^{x^{\prime}}\left\{\lambda_{0}\left(x^{\prime \prime}\right)+2 \alpha\left(x^{\prime \prime}\right)\right\} \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}\right\}$
where C_{1} and C_{2} are arbitrary integration constants, and showed that one can obtain $\alpha(x)$ as the limit of a sequence of quotients $s_{n}(x) / \lambda_{n}(x)$ where the numerator $s_{n}(x)$ and denominator $\lambda_{n}(x)$ are given by

$$
\begin{align*}
& s_{n}=s_{n-1}^{\prime}+s_{0} \lambda_{n-1} \tag{3}\\
& \lambda_{n}=\lambda_{n-1}^{\prime}+\lambda_{0} \lambda_{n-1}+s_{n-1} \quad n=1,2, \ldots
\end{align*}
$$

In some trivial cases one may obtain the exact result after a finite number of iterations, for example

$$
\begin{equation*}
\frac{s_{n}}{\lambda_{n}}=\frac{s_{n-1}}{\lambda_{n-1}}=\alpha \tag{4}
\end{equation*}
$$

Note that we can also start the recurrence relations (3) from $n=0$ with the initial conditions $\lambda_{-1}=1$ and $s_{-1}=0$.

Ciftci et al [1] showed that equation (4) is exact for some exactly solvable problems, and approximate for all nontrivial cases, where it is supposed to give a reasonable approximation for sufficiently great values of n. In the case of eigenvalue problems Ciftci et al [1] conjectured that one may obtain approximate eigenvalues from the roots of

$$
\begin{equation*}
\lambda_{n+1} s_{n}-s_{n+1} \lambda_{n}=0 \tag{5}
\end{equation*}
$$

This equation depends only on the eigenvalue if the problem is exactly solvable. In nontrivial cases, on the other hand, equation (5) depends also on x so that one has to choose an appropriate value of the latter in order to obtain the former [1]. The chosen value of x is arbitrary in principle, and affects the rate of convergence of the method.

Before discussing the performance of the AIM we first develop some of its equations in a different way in order to gain further insight, and also to have an idea of other methods that may be worth comparing with it. Note that we can factor the differential equation (1) as

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} x}+a(x)\right]\left[\frac{\mathrm{d}}{\mathrm{~d} x}+b(x)\right] y(x)=0 \tag{6}
\end{equation*}
$$

where $a=-\lambda_{0}-b$ and b is a solution of the Riccati equation

$$
\begin{equation*}
b^{\prime}-b^{2}-\lambda_{0} b+s_{0}=0 \tag{7}
\end{equation*}
$$

By straightforward integration of equation (6) we obtain
$y(x)=\exp \left[-\int^{x} b\left(x^{\prime}\right) \mathrm{d} x^{\prime}\right]\left\{C_{2}+C_{1} \int^{x} \exp \left[\int^{x^{\prime}}\left\{\lambda_{0}\left(x^{\prime \prime}\right)+2 b\left(x^{\prime \prime}\right)\right\} \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}\right\}$
which is identical to equation (2) if $b(x)=\alpha(x)$. We have arrived at the well-known result that the general solution to the second-order differential equation (1) can be expressed in terms of a solution of the Riccati equation (7). Note that the logarithmic derivative $-y^{\prime}(x) / y(x)$ satisfies the Riccati equation (7).

If we try a rational solution to the Riccati equation (7)

$$
\begin{equation*}
b(x)=\frac{A(x)}{B(x)} \tag{9}
\end{equation*}
$$

the functions $A(x)$ and $B(x)$ satisfy

$$
\begin{equation*}
\frac{A}{B}=\frac{\left(A^{\prime}+s_{0} B\right)}{\left(B^{\prime}+A+\lambda_{0} B\right)} \tag{10}
\end{equation*}
$$

Note that if the sequences s_{n} and λ_{n} converged towards some functions s and λ, respectively, then the latter would satisfy an equation identical to equation (10) with $A=s$ and $B=\lambda$. However, we should point out that the AIM does not require convergence of the sequences s_{n} and λ_{n} but of their ratio.

3. An exactly solvable problem

Before discussing nontrivial applications of the AIM we first consider an exactly solvable example that is slightly more general than the one treated by Ciftci et al [1]. If both λ_{0} and s_{0} are independent of x then b is independent of x and satisfies the quadratic equation $b^{2}+\lambda_{0} b-s_{0}=0$ with roots

$$
\begin{equation*}
r_{1}=-\frac{\lambda_{0}+\Delta}{2} \quad r_{2}=-\frac{\lambda_{0}-\Delta}{2} \quad \Delta=\sqrt{\lambda_{0}^{2}+4 s_{0}} \tag{11}
\end{equation*}
$$

On the other hand, the sequences (3) become $s_{n}=s_{0} \lambda_{n-1}$, and $\lambda_{n}=\lambda_{0} \lambda_{n-1}+s_{n-1}$, so that

$$
\begin{equation*}
\frac{s_{n}}{\lambda_{n}} \frac{s_{n-1}}{\lambda_{n-1}}+\lambda_{0} \frac{s_{n}}{\lambda_{n}}-s_{0}=0 . \tag{12}
\end{equation*}
$$

If we assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}}{\lambda_{n}}=\alpha \tag{13}
\end{equation*}
$$

then we conclude that α and b are solutions of the same quadratic equation as expected.
If we substitute one of the recurrence relations into the other we obtain $\lambda_{n}-\lambda_{0} \lambda_{n-1}-$ $s_{0} \lambda_{n-2}=0$. The general solution to this difference equation is $\lambda_{n}=c_{1} \rho_{1}^{n}+c_{2} \rho_{2}^{n}$, where $\rho_{1}=-r_{1}$ and $\rho_{2}=-r_{2}$. Taking into account the initial conditions we obtain

$$
\begin{equation*}
\lambda_{n}=\frac{1}{\Delta}\left(\rho_{1}^{n+2}-\rho_{2}^{n+2}\right) \quad s_{n}=\frac{s_{0}}{\Delta}\left(\rho_{1}^{n+1}-\rho_{2}^{n+1}\right) . \tag{14}
\end{equation*}
$$

If $\left|\rho_{1}\right|>\left|\rho_{2}\right|$ we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}}{\lambda_{n}}=\frac{s_{0}}{\rho_{1}}=-\rho_{2}=r_{2} \tag{15}
\end{equation*}
$$

which is one of the roots of the quadratic equation for b or α.
This simple example reveals two important features of the AIM. First, the ratio s_{n} / λ_{n} converges although the numerator and denominator may not. Second, the limit of the ratio s_{n} / λ_{n} is just one of the solutions; in this particular case the root with smaller absolute value.

4. The Schrödinger equation

The Schrödinger equation for one-dimensional and central-field models can be written as

$$
\begin{equation*}
\psi^{\prime \prime}(x)=[V(x)-E] \psi(x) \tag{16}
\end{equation*}
$$

where $\psi(x \rightarrow \pm \infty)=0$ in the former and $\psi(0)=\psi(x \rightarrow \infty)=0$ in the latter. Straightforward application of the AIM to this eigenvalue equation does not give reasonable results. For that reason we transform the solution according to $\psi(x)=g(x) y(x)$ that leads to a more convenient differential equation for $y(x)$

$$
\begin{equation*}
y^{\prime \prime}=-\frac{2 g^{\prime}}{g} y^{\prime}+\left(V-E-\frac{g^{\prime \prime}}{g}\right) y . \tag{17}
\end{equation*}
$$

Ciftci et al [1] showed that the AIM gave the correct answer for several exactly solvable models; one of them being the harmonic oscillator. Here we concentrate only on nontrivial

Table 1. Ground state of the anharmonic oscillators by means of the AIM and nearly optimum values of β.

n	$k=2, \beta=5$	$k=3, \beta=9$	$k=4, \beta=12$
10	1.325073435	1.802796295	
15	1.147766154	1.421665204	1.809765257
20	1.072223000	1.193157512	1.388298227
25	1.062711298	1.151776895	1.265435601
30	1.060482716	1.143861469	1.217197329
35	1.060372025	1.144668302	1.221967230
40	1.060362059	1.144837075	1.226994501
45	1.060362077	1.144798326	1.226106604
50	1.060362091	1.144802367	1.225633738
55	1.060362091	1.144802992	1.225851219
60	1.060362090	1.144802347	1.225830628
65	1.060362090	1.144802468	1.225801249
70	1.060362090	1.144802452	1.225826262
75	$"$	1.144802452	1.225821973
80	$"$	1.144802454	1.225818670
85	$"$	1.144802454	1.225821060
90	$"$	1.144802454	1.225819794

problems. One of such problems successfully treated by Ciftci et al [1] is the anharmonic oscillator $V(x)=x^{2}+0.1 x^{4}$. However, in order to determine the performance of the AIM we prefer the much more demanding family of anharmonic oscillators

$$
\begin{equation*}
V(x)=x^{2 k} \quad k=2,3, \ldots \tag{18}
\end{equation*}
$$

On setting $g(x)=\exp \left(-\beta x^{2} / 2\right)$ we obtain

$$
\begin{equation*}
y^{\prime \prime}=2 \beta x y^{\prime}+\left(x^{2 k}-\beta^{2} x^{2}+\beta-E\right) y \tag{19}
\end{equation*}
$$

For obvious symmetry reasons we follow Ciftci et al [1] and arbitrarily set $x=0$ in order to obtain the energy from equation (5). We expect the rate of convergence to decrease as k increases because the oscillator becomes 'more anharmonic'.

Numerical investigation shows that the AIM converges for the ground states of the oscillators with $k=2,3,4$, and that the rate of convergence depends on the value of β. The optimum value of β appears in all cases to be far from that given by the variational method with the trial function $\varphi=\exp \left(-\beta x^{2} / 2\right)$ (namely $\left.\beta=\left[4 k^{2} \Gamma(k+1 / 2)^{2} / \pi\right]^{1 /(2 k+2)}\right)$. We did not attempt to determine the optimum value of β exactly; we simply tried a set of values $\beta=1,2, \ldots$ and kept the one that appeared to yield the best convergence rate (to 10 exact digits in this case). For example, in the case of the $k=2$ oscillator and $n \leqslant 90$ we did not obtain convergence for $\beta=1$ or $\beta>8$. For $\beta=2,3,4,5,6,7$ and 8 convergence seems to take place at $n=72,60,46,44,48,60$ and 78 , respectively. Therefore, in this case we chose $\beta=5$. Proceeding in the same way with other anharmonic oscillators we thus obtained the results in table 1 which show the rate of convergence for the chosen values of β. It seems clear that the AIM converges for the first three values of k considered, and that the rate of convergence decreases with k as expected.

An interesting feature of the AIM is that the optimum value of β seems to be almost the same for all states. For example, table 2 shows the energies of some excited states of the $k=2$ oscillator and reveals that convergence decreases as the quantum number v increases.

Table 2. Excited-state energies with quantum number v for the $k=2$ oscillator by means of the AIM and $\beta=5$.

n	$v=2$	$v=4$	$v=6$	$v=8$	$v=10$
10	-	-	-	-	-
15	-	-	26.67151705	37.93020016	-
20	7.497990251	16.78188247	-	38.39928284	-
25	7.457160839	16.31120372	-	-	-
30	7.455587976	16.25869466	26.49361210	37.81029471	50.61903136
35	7.455705021	16.26187434	26.52557004	37.85990183	-
40	7.455697770	16.26182837	26.52873841	37.92883858	50.30914416
45	7.455697902	16.26182377	26.52841115	37.92234340	50.25707753
50	7.455697939	16.26182613	26.52847483	37.92305422	50.25627380
55	7.455697938	16.26182600	26.52847089	37.92300293	50.25643632
60	7.455697938	16.26182602	26.52847121	37.92300122	50.25624429
65	$"$	16.26182602	26.52847118	37.92300112	50.25625820
70	$"$	$"$	26.52847118	37.92300103	50.25625430
75	$"$	$"$	$"$	37.92300103	50.25625458
80	$"$	$"$	$"$	$"$	50.25625451
85	$"$	$"$	$"$	$"$	50.25625452
90	$"$	$"$	$"$	50.25625452	

We carried out the present calculations by means of the computer algebra system Maple [2] that allows analytical calculation of the functions s_{n} and λ_{n} and unlimited precision when solving equation (5) numerically.

Ciftci et al [1] also considered singular potentials of the form

$$
\begin{equation*}
V(x)=x^{2}+\frac{L(L+1)}{x^{2}}+\frac{\xi}{x^{v}} \tag{20}
\end{equation*}
$$

where $\xi, \nu>0$ and $L \geqslant-1$ may in some particular cases be related to the number of spatial dimensions and the angular momentum quantum number [1]. If we choose $g=x^{\gamma+1} \exp \left(-x^{2} / 2\right)$ we obtain
$y^{\prime \prime}=2\left(x-\frac{\gamma+1}{x}\right) y^{\prime}+\left[\frac{\xi}{x^{\nu}}+\frac{L(L+1)-\gamma(\gamma+1)}{x^{2}}+2 \gamma+3-E\right] y$.
The value of γ is arbitrary, and we may choose the most convenient one. For example, $\gamma=-1$ gives us the equation considered by Ciftci et al [1], and $\gamma=L$ also appears to be a reasonable candidate. In addition to that, we may vary γ in order to improve convergence. For simplicity, we follow Ciftci et al [1] and choose the minimum of $x^{2}+\xi / x^{\nu}$ in the equation for the energy (5).

In particular we consider one of the examples chosen by Ciftci et al [1], namely, the ground state of the model with $L=0$ and $v=1.9$. Table 3 shows a root of equation (5) for $\xi=10, \gamma=-1$ and $5 \leqslant n \leqslant 50$ (in this case $x_{0}=1.78$). The sequence appears to converge when $n<\approx 30$ but then starts to oscillate as n increases. We increased the precision of the calculation in order to make round-off errors as small as possible, and we believe that this is not the cause of the apparent divergence. In this case we may obtain a reasonably accurate eigenvalue by truncation of the sequence at an appropriate stage as one commonly does in the case of asymptotic divergent series. Other values of γ made the calculation more time consuming and did not appear to improve convergence considerably.

The most interesting singular potentials are those with small values of ξ because they are almost negligible everywhere except at the origin where they rise sharply. Unfortunately,

Table 3. Ground state of the singular potential with $\xi=10$ and $v=1.9$.

n	E_{0}
5	8.5723354
10	8.5644218
15	8.5643628
20	8.5643569
25	8.5643573
30	8.5643478
35	8.5644691
40	8.5618325
45	8.6582906
50	7.3247696

Table 4. Ground-state energies of the anharmonic oscillators by means of the Riccati-Padé method and Hankel determinants of dimension D.

D	$k=2$	$k=3$	$k=4$
2	1.050229315	-	-
3	1.060234468	1.136053454	-
4	1.060360577	1.145233319	1.219052324
5	1.060362073	1.144790196	1.226659815
6	1.060362090	1.144802855	1.225667864
7	1.060362090	1.144802441	1.225821874
8	$"$	1.144802454	1.225821878
9	$"$	1.144802454	1.225820097
10	$"$	$"$	1.225820119
11	$"$	$"$	1.225820113
12	$"$	$"$	1.225820114
13	$"$	$"$	1.225820114

it seems that the present version of the AIM does not apply to such 'stiff' cases, even for moderately small values of ξ such as $\xi=1$. We could not obtain reasonable results no matter which values of γ we tried.

5. Comparison with a closely related method

As argued in section 2 the AIM appears to be based on a rational approximation to the logarithmic derivative of the solution to the differential equation. Another approach based on the same idea is the Riccati-Padé method (RPM) [3, 4] where one approximates a Taylor expansion of a sort of regularized logarithmic derivative of the solution by means of a Padé approximant. When the approximant is forced to give one more coefficient of the Taylor expansion one obtains an expression for the energy as a root of a Hankel determinant. As the dimension of the determinant increases the roots approach the actual eigenvalues of the problem. This method has been extensively discussed elsewhere [3, 4] and will not be developed here.

Tables 4 and 5 show the rate of convergence of the RPM for the ground and excited states of the anharmonic oscillators discussed above. We clearly appreciate that the RPM converges

Table 5. Excited-state energies with quantum number v for the $k=2$ oscillator by means of the Riccati-Padé method and Hankel determinants of dimension D.

D	$v=2$	$v=4$	$v=6$	$v=8$	$v=10$
3	7.361589045	-	-	-	-
4	7.454596870	15.47354591	-	-	-
5	7.455685333	16.25382702	-	-	
6	7.455697797	16.26173650	26.47437308	-	-
7	7.455697936	16.26182503	26.52787928	37.55583915	-
8	7.455697938	16.26182601	26.52846472	37.91923453	-
9	7.455697938	16.26182602	26.52847111	37.92296024	50.23280789
10	$"$	16.26182602	26.52847118	37.92300059	50.25600314
11	$"$	$"$	26.52847118	37.92300102	50.25625182
12	$"$	$"$	$"$	37.92300103	50.25625449
13	$"$	$"$	$"$	37.92300103	50.25625452
14	$"$	$"$	$"$	50.25625452	

much faster and more smoothly than the AIM. Moreover, in some cases the RPM even yields tight upper and lower bounds to the eigenvalues [3, 4].

6. Conclusions

Throughout this paper we investigated the convergence rate of the AIM by means of numerical calculations. According to our results the AIM appears to converge for the eigenvalues of anharmonic oscillators and the appropriate choice of adjustable parameters improves the convergence properties remarkably. On the other hand, the AIM does not seem to apply to singular potentials in spite of attempts to tune adjustable parameters. In particular, the AIM fails badly in the most interesting cases of singular potentials that rise sharply at origin. It is true that Ciftci et al [1] gave results for a singular potential with $\nu=4$ and ξ as small as 0.001 . However, in those examples they chose $L \geqslant 3$ and the 'centrifugal' term $L(L+1) / x^{2}$, which does not rise so sharply at origin, appears to mask the behaviour of the singular term. For such large values of L other standard approaches yield more accurate results than the AIM. We mention, for example, the $1 / N$ expansions [5-7] and other polynomial approximations [7, 8]. In spite of this failure we believe that the AIM is an interesting approach that is worth further scrutinity with the purpose of improvement. In particular it may not be unlikely that a more judicious choice of the function $g(x)$ and of adjustable parameters (including the coordinate point at which one solves equation (5) could improve the convergence properties of the method in these difficult cases.

We have shown that the AIM converges much more slowly than the RPM which is based on a similar idea [3, 4]. In addition to it, the RPM yields upper and lower bounds to the eigenvalues of certain models [3, 4], and even the energies of metastable states [9]. However, the AIM is in certain sense more general because it does not require a Taylor expansion of the logarithmic derivative of the wavefunction. Note, for example, that it is not possible to apply the RPM to the singular potentials discussed above. It is because of this somewhat greater generality that we believe that the AIM is worth further investigation.

References

[1] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 3611807
[2] Maple 2003 http://www.maplesoft.com/
[3] Fernández F M, Ma Q and Tipping R H 1989 Phys. Rev. A 391605
[4] Fernández F M, Ma Q and Tipping R H 1989 Phys. Rev. A 406149
[5] Chatterjee A 1990 Phys. Rep. 186249
[6] Njock M G K, Nsangou M, Bona Z, Engo S G N and Oumarou B 2000 Phys. Rev. A 61042105
[7] Fernández F M 2001 Introduction to Perturbation Theory in Quantum Mechanics (Boca Raton, FL: CRC Press)
[8] Killingbeck J P, Grosjean A and Jolicard G 2001 J. Phys. A: Math. Gen. 348309
[9] Fernández F M 1995 J. Phys. A: Math. Gen. 284043

