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Abstract
We discuss a recently proposed asymptotic iteration method for eigenvalue
problems. We analyse its rate of convergence, the use of adjustable parameters
to improve it and the relationship with an alternative method based on the same
ideas.

PACS number: 03.65.Ge

1. Introduction

In a recent paper Ciftci et al [1] developed an interesting asymptotic iteration method (AIM)
for eigenvalue problems. They showed that the AIM yielded the correct answer for exactly
solvable models and gave reasonably approximate results for some nontrivial one-dimensional
problems such as anharmonic oscillators and singular potentials. Unfortunately, the authors
did not show the rate of convergence of their calculations and simply mentioned the number
of iterations necessary to obtain their results. Also, they did not compare the performance of
the AIM with other existing methods.

The purpose of this paper is to fill that gap and to investigate the AIM somewhat further.
First, we derive some of the AIM equations in a different way, second, we review one of the
exactly solvable models considered by Ciftci et al [1], third, we carry out calculations of order
considerably greater than those of Ciftci et al [1] in order to test the rate of convergence of the
method numerically, fourth, we explore the use of adjustable parameters to improve the rate
of convergence, fifth, we compare the AIM with a closely related method, and, finally, we try
to draw some conclusions about the performance of the AIM.

2. The asymptotic iteration method

Ciftci et al [1] proposed the AIM to solve second-order differential equations of the form

y ′′(x) = λ0(x)y ′(x) + s0(x)y(x). (1)
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They found that the general solution to this equation is

y(x) = exp

[
−

∫ x

α(x ′) dx ′
] {

C2 + C1

∫ x

exp

[∫ x ′

{λ0(x
′′) + 2α(x ′′)} dx ′′

]
dx ′

}
(2)

where C1 and C2 are arbitrary integration constants, and showed that one can obtain α(x) as
the limit of a sequence of quotients sn(x)/λn(x) where the numerator sn(x) and denominator
λn(x) are given by

sn = s ′
n−1 + s0λn−1

(3)
λn = λ′

n−1 + λ0λn−1 + sn−1 n = 1, 2, . . . .

In some trivial cases one may obtain the exact result after a finite number of iterations, for
example

sn

λn

= sn−1

λn−1
= α. (4)

Note that we can also start the recurrence relations (3) from n = 0 with the initial conditions
λ−1 = 1 and s−1 = 0.

Ciftci et al [1] showed that equation (4) is exact for some exactly solvable problems, and
approximate for all nontrivial cases, where it is supposed to give a reasonable approximation
for sufficiently great values of n. In the case of eigenvalue problems Ciftci et al [1] conjectured
that one may obtain approximate eigenvalues from the roots of

λn+1sn − sn+1λn = 0. (5)

This equation depends only on the eigenvalue if the problem is exactly solvable. In nontrivial
cases, on the other hand, equation (5) depends also on x so that one has to choose an appropriate
value of the latter in order to obtain the former [1]. The chosen value of x is arbitrary in
principle, and affects the rate of convergence of the method.

Before discussing the performance of the AIM we first develop some of its equations in
a different way in order to gain further insight, and also to have an idea of other methods that
may be worth comparing with it. Note that we can factor the differential equation (1) as[

d

dx
+ a(x)

] [
d

dx
+ b(x)

]
y(x) = 0 (6)

where a = −λ0 − b and b is a solution of the Riccati equation

b′ − b2 − λ0b + s0 = 0. (7)

By straightforward integration of equation (6) we obtain

y(x) = exp

[
−

∫ x

b(x ′) dx ′
] {

C2 + C1

∫ x

exp

[∫ x ′

{λ0(x
′′) + 2b(x ′′)} dx ′′

]
dx ′

}
(8)

which is identical to equation (2) if b(x) = α(x). We have arrived at the well-known result
that the general solution to the second-order differential equation (1) can be expressed in terms
of a solution of the Riccati equation (7). Note that the logarithmic derivative −y ′(x)/y(x)

satisfies the Riccati equation (7).
If we try a rational solution to the Riccati equation (7)

b(x) = A(x)

B(x)
(9)

the functions A(x) and B(x) satisfy

A

B
= (A′ + s0B)

(B ′ + A + λ0B)
. (10)
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Note that if the sequences sn and λn converged towards some functions s and λ, respectively,
then the latter would satisfy an equation identical to equation (10) with A = s and B = λ.
However, we should point out that the AIM does not require convergence of the sequences sn

and λn but of their ratio.

3. An exactly solvable problem

Before discussing nontrivial applications of the AIM we first consider an exactly solvable
example that is slightly more general than the one treated by Ciftci et al [1]. If both λ0

and s0 are independent of x then b is independent of x and satisfies the quadratic equation
b2 + λ0b − s0 = 0 with roots

r1 = −λ0 + �

2
r2 = −λ0 − �

2
� =

√
λ2

0 + 4s0. (11)

On the other hand, the sequences (3) become sn = s0λn−1, and λn = λ0λn−1 + sn−1, so that
sn

λn

sn−1

λn−1
+ λ0

sn

λn

− s0 = 0. (12)

If we assume that

lim
n→∞

sn

λn

= α (13)

then we conclude that α and b are solutions of the same quadratic equation as expected.
If we substitute one of the recurrence relations into the other we obtain λn − λ0λn−1 −

s0λn−2 = 0. The general solution to this difference equation is λn = c1ρ
n
1 + c2ρ

n
2 , where

ρ1 = −r1 and ρ2 = −r2. Taking into account the initial conditions we obtain

λn = 1

�

(
ρn+2

1 − ρn+2
2

)
sn = s0

�

(
ρn+1

1 − ρn+1
2

)
. (14)

If |ρ1| > |ρ2| we find that

lim
n→∞

sn

λn

= s0

ρ1
= −ρ2 = r2 (15)

which is one of the roots of the quadratic equation for b or α.
This simple example reveals two important features of the AIM. First, the ratio sn/λn

converges although the numerator and denominator may not. Second, the limit of the ratio
sn/λn is just one of the solutions; in this particular case the root with smaller absolute value.

4. The Schrödinger equation

The Schrödinger equation for one-dimensional and central-field models can be written as

ψ ′′(x) = [V (x) − E]ψ(x) (16)

where ψ(x → ±∞) = 0 in the former and ψ(0) = ψ(x → ∞) = 0 in the latter.
Straightforward application of the AIM to this eigenvalue equation does not give reasonable
results. For that reason we transform the solution according to ψ(x) = g(x)y(x) that leads to
a more convenient differential equation for y(x)

y ′′ = −2g′

g
y ′ +

(
V − E − g′′

g

)
y. (17)

Ciftci et al [1] showed that the AIM gave the correct answer for several exactly solvable
models; one of them being the harmonic oscillator. Here we concentrate only on nontrivial
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Table 1. Ground state of the anharmonic oscillators by means of the AIM and nearly optimum
values of β.

n k = 2, β = 5 k = 3, β = 9 k = 4, β = 12

10 1.325 073 435 1.802 796 295
15 1.147 766 154 1.421 665 204 1.809 765 257
20 1.072 223 000 1.193 157 512 1.388 298 227
25 1.062 711 298 1.151 776 895 1.265 435 601
30 1.060 482 716 1.143 861 469 1.217 197 329
35 1.060 372 025 1.144 668 302 1.221 967 230
40 1.060 362 059 1.144 837 075 1.226 994 501
45 1.060 362 077 1.144 798 326 1.226 106 604
50 1.060 362 091 1.144 802 367 1.225 633 738
55 1.060 362 091 1.144 802 992 1.225 851 219
60 1.060 362 090 1.144 802 347 1.225 830 628
65 1.060 362 090 1.144 802 468 1.225 801 249
70 1.060 362 090 1.144 802 452 1.225 826 262
75 " 1.144 802 452 1.225 821 973
80 " 1.144 802 454 1.225 818 670
85 " 1.144 802 454 1.225 821 060
90 " 1.144 802 454 1.225 819 794

problems. One of such problems successfully treated by Ciftci et al [1] is the anharmonic
oscillator V (x) = x2 + 0.1x4. However, in order to determine the performance of the AIM
we prefer the much more demanding family of anharmonic oscillators

V (x) = x2k k = 2, 3, . . . . (18)

On setting g(x) = exp(−βx2/2) we obtain

y ′′ = 2βxy ′ + (x2k − β2x2 + β − E)y. (19)

For obvious symmetry reasons we follow Ciftci et al [1] and arbitrarily set x = 0 in order
to obtain the energy from equation (5). We expect the rate of convergence to decrease as k
increases because the oscillator becomes ‘more anharmonic’.

Numerical investigation shows that the AIM converges for the ground states of the
oscillators with k = 2, 3, 4, and that the rate of convergence depends on the value of β.
The optimum value of β appears in all cases to be far from that given by the variational
method with the trial function ϕ = exp(−βx2/2) (namely β = [4k2�(k + 1/2)2/π ]1/(2k+2)).
We did not attempt to determine the optimum value of β exactly; we simply tried a set of
values β = 1, 2, . . . and kept the one that appeared to yield the best convergence rate (to 10
exact digits in this case). For example, in the case of the k = 2 oscillator and n � 90 we did
not obtain convergence for β = 1 or β > 8. For β = 2, 3, 4, 5, 6, 7 and 8 convergence seems
to take place at n = 72, 60, 46, 44, 48, 60 and 78, respectively. Therefore, in this case we
chose β = 5. Proceeding in the same way with other anharmonic oscillators we thus obtained
the results in table 1 which show the rate of convergence for the chosen values of β. It seems
clear that the AIM converges for the first three values of k considered, and that the rate of
convergence decreases with k as expected.

An interesting feature of the AIM is that the optimum value of β seems to be almost the
same for all states. For example, table 2 shows the energies of some excited states of the k = 2
oscillator and reveals that convergence decreases as the quantum number v increases.
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Table 2. Excited-state energies with quantum number v for the k = 2 oscillator by means of the
AIM and β = 5.

n v = 2 v = 4 v = 6 v = 8 v = 10

10 – – – – –
15 – – 26.671 517 05 37.930 200 16 –
20 7.497 990 251 16.781 882 47 – 38.399 282 84 –
25 7.457 160 839 16.311 203 72 – – –
30 7.455 587 976 16.258 694 66 26.493 612 10 37.810 294 71 50.619 031 36
35 7.455 705 021 16.261 874 34 26.525 570 04 37.859 901 83 –
40 7.455 697 770 16.261 828 37 26.528 738 41 37.928 838 58 50.309 144 16
45 7.455 697 902 16.261 823 77 26.528 411 15 37.922 343 40 50.257 077 53
50 7.455 697 939 16.261 826 13 26.528 474 83 37.923 054 22 50.256 273 80
55 7.455 697 938 16.261 826 00 26.528 470 89 37.923 002 93 50.256 436 32
60 7.455 697 938 16.261 826 02 26.528 471 21 37.923 001 22 50.256 244 29
65 " 16.261 826 02 26.528 471 18 37.923 001 12 50.256 258 20
70 " " 26.528 471 18 37.923 001 03 50.256 254 30
75 " " " 37.923 001 03 50.256 254 58
80 " " " " 50.256 254 51
85 " " " " 50.256 254 52
90 " " " " 50.256 254 52

We carried out the present calculations by means of the computer algebra system Maple
[2] that allows analytical calculation of the functions sn and λn and unlimited precision when
solving equation (5) numerically.

Ciftci et al [1] also considered singular potentials of the form

V (x) = x2 +
L(L + 1)

x2
+

ξ

xν
(20)

where ξ, ν > 0 and L � −1 may in some particular cases be related to the number
of spatial dimensions and the angular momentum quantum number [1]. If we choose
g = xγ +1 exp(−x2/2) we obtain

y ′′ = 2

(
x − γ + 1

x

)
y ′ +

[
ξ

xν
+

L(L + 1) − γ (γ + 1)

x2
+ 2γ + 3 − E

]
y. (21)

The value of γ is arbitrary, and we may choose the most convenient one. For example, γ = −1
gives us the equation considered by Ciftci et al [1], and γ = L also appears to be a reasonable
candidate. In addition to that, we may vary γ in order to improve convergence. For simplicity,
we follow Ciftci et al [1] and choose the minimum of x2 + ξ/xν in the equation for the
energy (5).

In particular we consider one of the examples chosen by Ciftci et al [1], namely, the
ground state of the model with L = 0 and ν = 1.9. Table 3 shows a root of equation (5) for
ξ = 10, γ = −1 and 5 � n � 50 (in this case x0 = 1.78). The sequence appears to converge
when n < ≈30 but then starts to oscillate as n increases. We increased the precision of the
calculation in order to make round-off errors as small as possible, and we believe that this is
not the cause of the apparent divergence. In this case we may obtain a reasonably accurate
eigenvalue by truncation of the sequence at an appropriate stage as one commonly does in
the case of asymptotic divergent series. Other values of γ made the calculation more time
consuming and did not appear to improve convergence considerably.

The most interesting singular potentials are those with small values of ξ because they
are almost negligible everywhere except at the origin where they rise sharply. Unfortunately,
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Table 3. Ground state of the singular potential with ξ = 10 and ν = 1.9.

n E0

5 8.572 3354
10 8.564 4218
15 8.564 3628
20 8.564 3569
25 8.564 3573
30 8.564 3478
35 8.564 4691
40 8.561 8325
45 8.658 2906
50 7.324 7696

Table 4. Ground-state energies of the anharmonic oscillators by means of the Riccati–Padé method
and Hankel determinants of dimension D.

D k = 2 k = 3 k = 4

2 1.050 229 315 – –
3 1.060 234 468 1.136 053 454 –
4 1.060 360 577 1.145 233 319 1.219 052 324
5 1.060 362 073 1.144 790 196 1.226 659 815
6 1.060 362 090 1.144 802 855 1.225 667 864
7 1.060 362 090 1.144 802 441 1.225 821 874
8 " 1.144 802 454 1.225 821 878
9 " 1.144 802 454 1.225 820 097

10 " " 1.225 820 119
11 " " 1.225 820 113
12 " " 1.225 820 114
13 " " 1.225 820 114

it seems that the present version of the AIM does not apply to such ‘stiff’ cases, even for
moderately small values of ξ such as ξ = 1. We could not obtain reasonable results no matter
which values of γ we tried.

5. Comparison with a closely related method

As argued in section 2 the AIM appears to be based on a rational approximation to the
logarithmic derivative of the solution to the differential equation. Another approach based
on the same idea is the Riccati–Padé method (RPM) [3, 4] where one approximates a Taylor
expansion of a sort of regularized logarithmic derivative of the solution by means of a Padé
approximant. When the approximant is forced to give one more coefficient of the Taylor
expansion one obtains an expression for the energy as a root of a Hankel determinant. As
the dimension of the determinant increases the roots approach the actual eigenvalues of the
problem. This method has been extensively discussed elsewhere [3, 4] and will not be
developed here.

Tables 4 and 5 show the rate of convergence of the RPM for the ground and excited states
of the anharmonic oscillators discussed above. We clearly appreciate that the RPM converges
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Table 5. Excited-state energies with quantum number v for the k = 2 oscillator by means of the
Riccati–Padé method and Hankel determinants of dimension D.

D v = 2 v = 4 v = 6 v = 8 v = 10

3 7.361 589 045 – – – –
4 7.454 596 870 15.473 545 91 – – –
5 7.455 685 333 16.253 827 02 – – –
6 7.455 697 797 16.261 736 50 26.474 373 08 – –
7 7.455 697 936 16.261 825 03 26.527 879 28 37.555 839 15 –
8 7.455 697 938 16.261 826 01 26.528 464 72 37.919 234 53 –
9 7.455 697 938 16.261 826 02 26.528 471 11 37.922 960 24 50.232 807 89

10 " 16.261 826 02 26.528 471 18 37.923 000 59 50.256 003 14
11 " " 26.528 471 18 37.923 001 02 50.256 251 82
12 " " " 37.923 001 03 50.256 254 49
13 " " " 37.923 001 03 50.256 254 52
14 " " " " 50.256 254 52

much faster and more smoothly than the AIM. Moreover, in some cases the RPM even yields
tight upper and lower bounds to the eigenvalues [3, 4].

6. Conclusions

Throughout this paper we investigated the convergence rate of the AIM by means of numerical
calculations. According to our results the AIM appears to converge for the eigenvalues of
anharmonic oscillators and the appropriate choice of adjustable parameters improves the
convergence properties remarkably. On the other hand, the AIM does not seem to apply to
singular potentials in spite of attempts to tune adjustable parameters. In particular, the AIM
fails badly in the most interesting cases of singular potentials that rise sharply at origin. It is
true that Ciftci et al [1] gave results for a singular potential with ν = 4 and ξ as small as 0.001.
However, in those examples they chose L � 3 and the ‘centrifugal’ term L(L + 1)/x2, which
does not rise so sharply at origin, appears to mask the behaviour of the singular term. For
such large values of L other standard approaches yield more accurate results than the AIM. We
mention, for example, the 1/N expansions [5–7] and other polynomial approximations [7, 8].
In spite of this failure we believe that the AIM is an interesting approach that is worth further
scrutinity with the purpose of improvement. In particular it may not be unlikely that a more
judicious choice of the function g(x) and of adjustable parameters (including the coordinate
point at which one solves equation (5) could improve the convergence properties of the method
in these difficult cases.

We have shown that the AIM converges much more slowly than the RPM which is based
on a similar idea [3, 4]. In addition to it, the RPM yields upper and lower bounds to the
eigenvalues of certain models [3, 4], and even the energies of metastable states [9]. However,
the AIM is in certain sense more general because it does not require a Taylor expansion of the
logarithmic derivative of the wavefunction. Note, for example, that it is not possible to apply
the RPM to the singular potentials discussed above. It is because of this somewhat greater
generality that we believe that the AIM is worth further investigation.
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